Test Specification:

Statistical Use-Test Generator

[image: image1.png]

Joe Attard

Chuck Brazzel

Dimitry Bekkerman

Mike Angove

CIS375 Maxim

Dec. 01, 2004

Table of Contents

1.0 Introduction

1.1 Goals and objectives

1.2 Statement of scope

1.3 Major constraints

2.0 Test Plan

2.1 Software (SCIís) to be tested

2.2 Testing strategy

2.3 Testing resources and staffing

2.4 Test work products

2.5 Test record keeping

2.6 Test metrics

2.7 Testing tools and environment

2.8 Test schedule

3.0 Test Procedure

3.1 Software (SCIís) to be tested

3.2 Testing procedure

3.3 Testing resources and staffing

3.4 Test work products

3.5 Test record keeping and test log

4.0 Bibliography

1.0 Introduction

Testing is a very important part of any project that is frequently overlooked. Without a test plan, a project can go awry in a number of ways. A software project must undergo various stages of product testing. It is necessary that each specification document be connected to a part of the design in order to provide the development team with an idea of the testing required. A test plan must be created in the early states of the project because toward the final stages of development the programming team will be pressured to created a limited number of test cases and rapidly implement them. Testing involves testing individual software modules then integrating them together and testing them along the way and then testing the finished product as a whole (unit testing, integration testing, product testing, and acceptance testing). If proper testing is not implemented correctly or not implemented at all the product suffers as a whole. Therefore, it is essential that every test plan must specify what testing is to be performed, when it is to be performed, and how it is to be performed.

1.1 Goals and objectives

The overall objective of this document is to provide a clear view of a complete strategy on how to test the Statistical Use-Test Generation (SUTG). This document will clearly state the testing strategy during and after the development of the SUTG tool. Main goal of this document is to describe a testing strategy, which should uncover most of the errors and potential risk that may occur while the tool is being developed and after the software has been deployed.
1.2 Statement of scope

In this project, our team is going to focus mostly on black box testing some white box (glass box) testing. White box testing requires completely knowing the internal working of a product. White box testing involves checking every possible logic path the system has. Due to time constraints, white box testing will not be the main focus of testing in this project.

Black box testing is an important way to test code modules, in which the code is executed with test cases based on specifications. Specifications are carefully looked over and test cases are drawn up to check whether the code obeys the specification document. Black box testing focuses on demonstrating the functions created are operational, that the software properly accepts the user inputs, and that the outputs are correctly calculated, produced and outputted to the screen.

The user must use a keyboard and mouse in order to enter inputs into the tool. Test cases must the set up for both types of input devices. The tool will produce outputs based on the user inputs, which must be tested as well. Testing must ensure that proper error messages are displayed in the case the user has not made proper inputs or the system doesn't understand the inputs made by the user. Black box testing will be performed to analyze and test user inputs, which will insure the quality of software and that it is error free. The results of testing will show the validity of the functions, system behavior and performance, system sensitivity to certain input values, system boundaries, the data rates and volume the system can tolerate, if certain data combinations have an effect on the system.

User inputs and outputs will be tested using various Internet browsers such as: Internet Explorer, Mozilla based, and Mac browsers. The system’s performance and response time will be tested using a high a high speed and dial-up Internet connection. Performance and response time of the system will vary based on the Internet connection, and number of people using the website simultaneously

User Inputs Entered Using a Keyboard:

All of the inputs entered using a keyboard will be tested to make sure that functions created to take in the inputs are operational, that the software properly accepts the user inputs, there are no errors in the system’s behavior and performance, the system is not sensitive to certain input values, accept its input system boundaries, and that proper error messages appear when user inputs are incorrect.

Test case name

· The case name input must be entered.

· The input window of the case name is limited to be 1 - 25 characters long.

· The tool will not allow the user to enter more than 25 characters in the test name.

· The case name will take character and numeric inputs

· Error message is displayed if the test case name is not entered.

Program stimulus

· The program stimulus is bounded by a minimum of 1 input and 10 maximum inputs.

· The program stimulus must be 2 – 25 characters long.

· The tool will not allow the user to enter more than 25 characters as the stimulus.

· The stimulus can have character and numeric inputs

· Error message is displayed if the stimulus is not entered or stimulus is entered incorrectly.

· Each stimulus must have a probability.

· The program will be tested with stimuli ranging from 1 to 10.

Probability for each stimulus
· The probability for each stimulus is limited to be 0 - 2 characters long.

· Each stimulus must have a probability.

· Inputs must be integers only.

· Integer values will range from 0 – 99.

· Total probability must add up to 100.

· The program will show an error message to re-input the probabilities if the total probability does not equal 100 or an individual probability is more than 100

· Various probability values will be tested along with different program stimuli.

Number of use cases to generate

· The number of use cases to generate is bounded to be 0 - 1 characters long.

· Inputs must be integers only.

· Integer values will range from 0 – 9.

· An error message must appear if the number of use cases to be generated has not been filled in or the input is not an integer.

Length of each use case

· The length of each use case is bounded to be 0 - 1 characters long.

· Inputs must be integers only.

· Integer values will range from 0 – 9.

· An error message must appear if the length of a use case has not been entered or the input is not an integer.

User Inputs Entered Using a Mouse:

All of the inputs entered using a mouse will be tested to make sure that functions created to take in the inputs are operational, that the software properly accepts the user inputs, there are no errors in the system’s behavior and performance, the outputs are correctly calculated, produced, and outputted to the screen.

Submit button

· The submit button must return an output page.

· The submit button testing will be performed to make sure the button is activated by the left click of a mouse or “Enter ” key on the keyboard.

· The submit function processes the keyboard inputs entered by the user.

· Sends the data to the proper function where calculations are performed.

· The output is produced with a quick response timing of the submit function.

Reset form button
· The reset button must return a blank input form.

· The reset button testing will be performed to make sure the button is activated by the left click of a mouse or “Enter “ key on the keyboard.

· All the keyboard entries made by the user have been cleared.

· The reset has quick response timing.

Links to help documents

· The help link will open the help menu options in the main web window.

· Help links to external web sites will open in a new window.

· The help document links buttons testing will be performed to make sure the button is activate for the left click of the mouse, or “Enter “ key on the keyboard.

· The right click of a mouse is also active so the user can conveniently open any link in a new window and have functionality of other features associated with the right click.

· The help menu link has quick response timing.

Program Output:

Submit causes generated use cases to be displayed on a page. Testing for this function will involve having a correctly formatted output. The test case name, the stimulus, and the random use cases must be displayed in viewer friendly form and correctly formatted. The output must be of desired font that is easy for the user to read, and the output should be properly spaced.

Reset returns a blank user input form. Test must be performed to make sure the all keyboard inputs made by the user are cleared and a black form is returned.

Help menu link displays selected help item. Outputs of links must be tested for response for left and right mouse clicks, available functions associated with the right mouse click, formatting of the help menus, making sure the links work properly, and to ensure a quick response time to access the links.

Using Random Testing:

All the feature of the Statistical Use-Test Generation (SUTG) will be tested, but some functionality and behavior features will not be tested completely. The tool behavior and functionality of the will only be tested using various combinations of inputs. The tool will be tested with 1 through 10 stimulus inputs while using different values for the probability of each stimulus, number of use cases, and length of each use case. We will also test the boundaries of the values for probability of each stimulus, number of use cases, and length of each use case. Some random values in between the boundaries will be tested, but not all the possible values and combination. It would be impossible to test all the possible combinations while creating this project because it would take years to do. If random testing is assured by returning a 100 percent error free output, we will assume that the all the other possibilities will have the have the same behavior and functionality.

1.3 Major constraints

The Statistical Use-Test Generator tool project has only a few major constraints and performance issues that must be addressed such as the maximum number of users, number of concurrent users, and allowable response time for calculating use-cases. The max number of users and number of concurrent users will vary but we predict will never exceed the capability of the projected hosting location. The maximum time required to generate use-cases is based on the attention span of a user or about two minutes. Inputting stimulus and probabilities into the input form will likely take the most time for the user. We estimate the maximum time for input at five minutes and will largely be determined by the user interface design. These constraints will be tested using both high-speed and dial-up Internet connections.

One of the business constraints is that this project is web-based meaning that the STUG tool must be coded using HTML and JavaScript, not C++ or Visual Basic. The tool will not be a downloadable file, which means that the user must have Internet access in order to use the tool. The tool will be tested using various browsers including Internet Explorer, Mozzilla / Firefox, Mac browsers, and Netscape.

Testing of the project must be completed prior to the project due date (delivery time.)

Below is a list of major constraints:

· Behavior constraints

· Test if platform independent web browser interface

· Test if Input form quick to use for user

· Performance constraints

· Test the server’s Internet connection speed

· Test system behavior with different number of concurrent users

· Testing to assure quick use-case calculation time

· Technical constraints

· Testing to assure form validation

· Testing and debugging Java scripting language

· Testing web programming

· Business constraints

· User must have an Internet connection

· The Tool is not downloadable

· Tool must be tested using different browsers

· Timing constraints

· Must be tested prior to the due date (delivery date) 12/15/2004

2.0 Test Plan

2.1 Software (SCIís) to be tested

There will be three main SCI’s to be tested. The first SCI being tested is the InputVerifier, which will be the part of the SUTG, which will check inputs for valid data. The data is then sent to the Generator; from here it must be used to create the output data. The Generator must be checked to ensure consistency between input and output. The last part of testing will be testing the support functions of the page as well as navigating the page using different browsers. This part of testing may seem the least important but is essential due to the program being web-based. Potential users may be using any of the commonly available browsers.

2.2 Testing strategy

The primary goal of the tests will be to make sure the system meets the specified requirements. These will be tracked with a traceability matrix later in the document. Since this application is web-based, our testing strategy must take into consideration the variety of web browsers potential users might use. The other strategic approach we will take in testing is the understanding that exhaustive testing of all possible outcomes is not possible. That is the reason this program is created to help come up with reasonable test cases. So we will attempt to test all reasonable cases by using a combination of black box testing and some white box testing. The tool will be tested with 1 through 10 stimulus inputs while using different values for the probability of each stimulus, number of use cases, and length of each use case. We will also test the boundaries of the values for probability of each stimulus, number of use cases, and length of each use case. Some random values in between the boundaries will be tested, but not all the possible values and combination.

2.2.1 Unit testing

The strategy for each of the 3 main test areas will be expanded on here:

1. The strategy for testing the InputVerifier part of the SUTG will mainly involve testing input values so that only correct values can be entered. This will help ensure there is no error in the results of the program. Other input testing will be of the buttons on the page to check for correct results. Error messages will be used to inform the user of incorrect inputs.

2. The strategy for testing the Generator part of the SUTG will involve checking for consistency between input and output. This will be done by using a variety of inputs. The Generator should always function because the InputVerifier is designed to ensure the Generator receives useable data. The testing team will need to make sure output data shows up correctly.

3. The last type of testing will involve attempting to recreate what a user might do using this program. This will involve moving around the separate pages and seeing if anything is modified when things are done in different orders. This also will be important because this will involve seeing how various features of the program respond in different browsers.

2.2.2 Integration testing

Integration testing will be done to test how the various components function together. The main two being the InputVerifier and the Generator, these 2 must work together properly for the program to be effective. Integration testing will also expand upon part 3 from the previous area. The team must test how the various parts of the overall program work together and that they are error free. This part of the testing will not be very complicated due to the limited size of the web page. Specific test cases will be covered later in section 3.

2.2.3 Validation testing

Validation testing will be highly important. Validation testing will be done to ensure the software meets the requirements specified. There is no specific customer for the system but many potential users and in order for it to be effective it must meet functional and performance requirements. Specific test cases will be covered later in section 3.

2.2.4 High-order testing

High order testing will be the final stage of testing. This will involve a lot of black box testing and testing of results due to specific inputs. This will ensure proper functionality of the system by testing for correctness in the results. Specific test cases will be covered later in section 3.

2.3 Testing resources and staffing

All 4 members of the team will conduct the testing. Testing will be done independently from each other. Some tests may be duplicated due to this method but time remaining on the project allows for this.

2.4 Test work products

The testing team will create a test traceability matrix to make sure the system passes all tests conducted.

2.5 Test record keeping

The team will use the traceability matrix to record the status of each test on each browser and how it traces back to the system requirements.

2.6 Test metrics

Since this project is being created in an academic setting and not a business setting, the team will not have a need for keeping metrics for future projects.

2.7 Testing tools and environment

The web program will be tested on the team’s personal computers and laptops. These should give an accurate representation of a potential user’s computer. The primary testing tools will be different web browsers since this is where the greatest potential for quality issues can occur. The system will be tested using Internet Explorer, Netscape Navigator, Mozilla Firefox, and Mac browsers. The tool response time will be tested using high-speed and dial-up Internet connection. Therefore, a broadband and a dial-up Internet are required as a resource.

2.8 Test schedule

Testing Schedule:

	Test Type
	Duration

	Unit testing
	Dec 2, 2004 – Dec 4, 2004

	Integration testing
	Dec 5, 2004 – Dec 7, 2004

	Validation testing
	Dec 8, 2004 – Dec 11, 2004

	High order testing
	Dec 12, 2004 – Dec 14, 2004

3.0 Test Procedure

3.1 Software (SCIís) to be tested

The software to be tested is identified by name. Exclusions are noted explicitly. Since this is a web base application, the primary focus will be the two units that do the actual data manipulation. The first of the two is the form verification script. This unit verifies that all the data entered into the input form is valid. Error messages that direct the user to the correct procedure will be used as feedback from this component. The second major component is the core of our project. This unit does the majority of the data manipulation, which consists of generating random test-cases, formatting stimuli, and comparing the probabilities. We will refer to these two components as InputVerifier and Generator.

3.2 Testing procedure

Software quality management activities will be conducted throughout the entire scope of the project. Strong emphasis will be placed on the spiral-testing model to ensure that the product does not deviate from the design specifications. Specifically, unit testing, integration testing, and high-order tests will be conducted in this order as the project evolves. Periodic Formal Technical Reviews (FTR) will then be used to evaluate each component and the interfaces that connect them. These reviews will be used to ensure both validation and verification of the project.

The tests are designed to:

· Check the functions of the component (or group of components).

· Verify whether it does everything it is supposed to do.

The test cases are derived based on:

· The definition of what the component (or components) is intended for.

· The equivalent component specification or design information rather than its own control structure.

Black Box Testing attempts to find errors in the following categories:

· Incorrect or missing functions

· Interface errors

· Errors in data structures

· Performance errors

3.2.1 Unit test cases

3.2.1.2 Stubs and/or drivers for component InputVerifier

This component will require both a driver and a stub to thoroughly test it. The driver needed is simply the HTML form page. This supplies the tester with the necessary text boxes. This is also the source of input for the InputVerifier. In addition to the driver, a stub will also be required. This stub will capture the internal data structures and display them in a consistent format.

3.2.1.3 Test cases component InputVerifier

Interface: Tests of data flow across a module interface are required before any other test is initiated. In addition, local data structures should be exercised.

1) Enter sample data

2) Corresponding Data structures (Output of InputVerifier)

TestName: Test case name

S1, S2, …, S10: Program stimulus

P1, P2, …, P10: Probability for each stimulus

TestNum: Number of use cases to generate

TestLen: Length of each use case

Boundary conditions: the tester should note these boundary conditions. Error messages should be displayed for each input out of its individual boundary.

· Test case name – Must be entered. Length 1-25

· Program stimulus – Length 2-25

· Probabilities – Length 0-2, values 1-99, integer only, Total must equal 100

· Number of use cases to generate – Length 0-1, values 1-9, integer only

· Length of each use case – Length 0-1, values 1-9, integer only

Independent paths: Selective testing of execution paths is an essential task during the unit test. There is only one, non-erroneous path for this component. That is when the output is equal to the input. (i.e. All the input was valid and is passed on to the Generator component)

Error handling paths: Due to the size of this application, we can test the majority of the error paths in this component. The boundaries noted in the aforementioned subsection should be broke and error messages should be displayed for each input out of boundary.

3.2.1.4 Purpose of tests for component InputVerifier

The purpose of these tests is to verify that the InputVerifier demands the minimal amount of input before it is passed on to the Generator component.

3.2.1.5 Expected results for component InputVerifier

Data structures displayed by the stub should be equal to the input passed through the InputVerifier. Error messages should be displayed for each input out of its individual boundary.

3.2.1.2 Stubs and/or drivers for component Generator

The Generator component will demand both a driver and a stub also. Like the InputVerifier, the driver needed is simply the HTML form page. This supplies the tester with the necessary text boxes. However, the tester is required to enter data that the InputVerifier would allow to pass through. Doing so, allows the Generator to be tested concurrently with the InputVerifier. The stub needed for this unit test simply formats the data in an understandable manner. Not requiring a final version of this stub increases the time we have to analyze the critical components.

3.2.1.3 Test cases component Generator

Interface: Output generated by the InputVerifier is the input for the Generator component. However, the InputVerifier is not needed for the testing of the Generator component. Input for the Generator component:

TestName: Test case name

S1, S2, …, S10: Program stimulus

P1, P2, …, P10: Probability for each stimulus

ProbSum: Sum of the probabilities

TestNum: Number of use cases to generate

TestLen: Length of each use case

It may seem that this input is the same for the InputVerifier, but this input is considered verified and the previous input was not. Entering an example case should generate a separate page with these data structures displayed:

TestName: Test case name

S1, S2, …, S10: Program stimulus

P1, P2, …, P10: Probability for each stimulus

I1, I2, …, I10: Interval for each stimulus based on probability

Rand: Random number 1-100 generated

TestNumMax: Max number of use cases to generate

TestNumCnt: Counter for number of use cases to generate

TestLenMax: Max length of each use case

TestLenCnt: Counter length of each use case

Output: Outputted use case number

Sequence: Outputted sequence of test-cases

Boundary conditions: Conditions tested within this component deal with changing the verified output of the InputVerifier. This means the input tested must be “correct”. However, other boundaries can still be tested.

Test upper and lower bounds of the number of stimuli. 1, 2, and 10 stimuli will suffice.

Test upper and lower bounds of the number of test cases and length of each.

3.2.1.4 Purpose of tests for component Generator

The purpose of this unit test is to verify that the Generator component produces a truly random sequence of test cases. The length and the number of test cases should also correspond to the input.

3.2.1.5 Expected results for component Generator

The results expected for this test case are the defined data structures that correspond to the input. The non-formatted sequence of test-cases is our primary focus. This is the core of our application.

3.2.2 Integration testing

3.2.2.1 Testing procedure for integration

We will be using an incremental integration approach to combine and test our components. Our program will be constructed and tested in small increments, where errors are easier to isolate and correct, interfaces are more likely to be tested completely, and a systematic approach may be applied. The specific type of incremental integration we will use is top-down integration.

3.2.2.2 Stubs and drivers required

The integration of the two major components will require a single stub for proper testing. This stub will simply format the data output by the Generator and display it on a web page. Having this stub at this stage in the test will surely speed up this specific testing phase.

3.2.2.3 Test cases and their purpose

The test will use a subset of the test described in the individual unit tests. The purpose of these test are to prove that given input the combined components will respond with the correct error messages and output the correct data when the InputVerifier accepts the input as valid. Some of these tests include testing the interface, boundary conditions, and error handling paths.

3.2.2.4 Expected results

The results produced from this integration test are the same as the final versions results. Error messages should be displayed that direct the user to the correct procedure of entering data and results displayed on the final output page should be in a logical order.

3.2.3 Validation testing

3.2.3.1 Testing procedure for validation

Using example input that again tests the boundaries, interface, and error conditions, will ensure that the application conforms to the requirements.

3.2.3.3 Expected results

Again, error messages should be displayed that direct the user to the correct procedure of entering data and results displayed on the final output page should be in a logical order. A legend that corresponds to each stimulus should be displayed along with their individual probabilities. The option to display the data in a printer friendly format should be given to the user. Finally, the use-tests generated should match the number entered in the test length and number of tests fields.

3.2.3.4 Pass/fail criterion for all validation tests

All of the expected results described above directly correspond with a requirement specification. With that said, the only way these test will pass is if the results meet or exceed the expected results. Revision of the application is needed if any of the actual results stray from the expected.

3.2.4 High-order testing (a.k.a. System Testing)

3.2.4.1 Recovery testing

In this test we are concerned with maintaining the stimulus entered by the user. If for example, the user enters all the information in the input form and selects submit, the user should then be able to view the result, recover the original data, and modify it.

3.2.4.2 Security testing

There are few security issues that concern this application. Other than the company hosting the application, we are not concerned with security.

3.2.4.3 Stress testing

Stress testing will need to be conducted with boundaries keep in mind. All of the probability text boxes need to tested with numbers higher than 100, negative numbers, and alphabetical letters. This will ensure that all the error messages are functioning correctly. This also translates back to the implicit requirement of usability.

3.2.4.4 Performance testing

Performance testing must be conducted in a variety of different environments. Explicit time constraints have been set to 1 minute to generate the actual random sequence of test cases. Any of the aforementioned test cases will be sufficient for verifying that it meets or exceed this requirement.

3.2.4.5 Alpha/beta testing

We have a unique opportunity to conduct our alpha testing within our class. Students will need to have some preliminary knowledge of the application before we can conduct our testing session. However, our tester will give minimal help. Students will then be given the task of producing a random sequence of test cases. Given access to the site and some general knowledge of the purpose of our application, students should be able to accomplish the task at hand. As testers we will need to watch closely for the errors that the students produce. This will invaluable for improvement of our tool.

3.2.4.6 Pass/fail criterion for all validation tests

The pass/fail criteria for the aforementioned tests will need to meet or exceed the stated goal in each. Stress test cases should produce error messages for all the non-valid entrees. In addition to stress testing, the majority of the users in alpha testing should accomplish the goal of producing a random sequence of test cases. We will put a lower bound of 90% of the student should be able to accomplish the goal. If it may be that students cannot complete the task, redesign of the application should be considered.

3.3 Testing resources and staffing

Specialized testing resources are described and staffing is defined. The role of any ITG is also defined. Resources required for conducting all of our tests cases:

· Internet access

· Computer with multiple, modern browsers

· Volunteer SE students

· Team members

With this application being published on the tiny tools page, access will be unlimited for SE students. Feedback from this group will be considered an ITG.

3.4 Test work products

Requirements traceability matrix

System requirements traceability matrixes are used to verify that the data requirements specified are being applied to the system. It is vital to keep track of the system requirements to make sure that all of them have been satisfied.

	
	Easy Use
	User Interface
	Maintainability
	Upgradeable

	Simple User Interface

	(
	(
	
	(

	Fast Input

Processing

	(
	(
	
	

	User Friendly

Print Option

	
	(
	
	(

	Easy to Use

Help Links

	(
	(
	(
	(

	JavaScript

HTML

	
	(
	(
	(

3.5 Test record keeping and test log

The test log is used to maintain a chronological record of all tests and their results. This log would be maintained as a Microsoft Excel document and could easily be expanded.

	Requirement
	Test to be done
	Check list

	Web access
	Internet Explorer
	

	
	Mozilla
	

	
	
	

	
	
	

	
	
	

	
	
	

	Input Form
	Boundary Testing
	

	
	Interface Testing
	

	
	Independent Path Tests
	

	
	Error Testing
	

	
	
	

	Generator
	Boundary Testing
	

	
	Interface Testing
	

	
	Independent Path Tests
	

	
	Error Testing
	

	 Help Function
	Verify Links
	

	 Site Navigation
	Verify Links
	

	 Generated use cases
	Integration Tests
	

	
	Validation Tests
	

	
	High-Order Tests
	

4.0 Bibliography

Pressman, Roger S. (2005). Software Engineering: A Practitioner’s Approach (6th ed.). New York: McGraw-Hill.

_1126453222.bin

